A student desiring a Master of Science in biology will need to complete 32 semester hours of graduate work. A minimum of 26 hours will be biology; the remaining hours may include cognate courses (e.g., in education, psychology, or computer science) approved by the graduate advisor. Of the total 32 hours, sixteen hours must be classroom courses (i.e., non-independent study) and twelve hours must be taken at the 600 level. The graduate advisor must approve the entire course of study.

The student must pass a comprehensive oral exam covering any aspect of biology, with an emphasis on the graduate classes taken by the student and the student's field of study. The oral comprehensive exam must be passed during the semester immediately following completion of 24 graduate semester hours. Oral comprehensive exams will be offered during a one-week period in each of the spring and fall semesters.

All biology graduate students must complete an independent research thesis and enroll in six hours of thesis (BIO 699). In the student's first year, a committee of three members of the graduate faculty (including the thesis advisor) will be chosen in consultation with the graduate advisor. A majority of committee members must be from the faculty of the department of Biology at Bradley. This committee will advise the student in his or her thesis research. Within three semesters following enrollment in the graduate program (or prior to completion of 18 semester hours), the student must submit a thesis proposal to his or her thesis committee. The student will be permitted to enroll in BIO 699 (thesis) only upon written acceptance of the proposal by the thesis committee. Upon completion of the thesis, a student will present a departmental seminar. The student must then successfully defend the thesis to the
committee members. Full-time students should anticipate requiring a minimum of four semesters for completion of the biology graduate program.

Course Descriptions

BIO 501
Biology of Fishes
3 hrs.
Fishes: organ-system structure and function, ecology, embryology, behavior, and economic importance. Prerequisites: 6 hours college-level biology.

BIO 506
Advanced Microbiology
3 hrs.
Comprehensive analysis of selected topics of current interest in bacteriology, immunology, and virology: genetic engineering, plasmid research, bacterial and bacteriostatic agents, complement system, viruses, tumor formation, and cancer. Prerequisites: one semester of laboratory bacteriology; organic chemistry; or consent of instructor.

BIO 509
Human Genetics
3 hrs.
Genetic theory and methodology applied to humans. Prerequisites: C or better in BIO 224.

BIO 510
Population and Evolutionary Ecology
3 hrs.
Emphasis on structure, growth patterns, and interactions of populations; relationship to evolutionary theory. Prerequisites: MTH 115; one semester of environmental biology or consent of instructor.

BIO 519
Comparative Animal Behavior
3 hrs.
Animal communication, social behavior, and evolution of behavior. Comparisons of a wide variety of vertebrates and invertebrates. Prerequisites: 6 hours of college level biology or zoology.

BIO 525
Advanced Physiology
3 hrs.
Detailed study of the structure and function of animals; special reference to the human body; theories and methods of investigation mostly at organ system level; adaptive strategies to special conditions. Prerequisite: one semester of physiology or consent of instructor.

BIO 530
Plant Systematics
3 hrs.
Evolution, classification, and characteristics of various flowering plant families. Prerequisites: 6 hours college-level biology.

BIO 545
Biophysics
3 hrs.
Applications of physics principles and methods of investigation of biological systems. Emphasis on physical environmental effects on biological systems. Cross listed as PHY 545. Prerequisites: PHY 108 or 201; senior standing; or consent of instructor. PHY 345 recommended.

BIO 561
Natural History of Vertebrates
3 hrs.
Vertebrates as integrated organisms: emphasis on activities and interaction with environment under natural conditions. Field work on local fauna. Introduction to classification. Prerequisite: 6 hours of college level biology or zoology.

BIO 563
Advanced Plant Ecology
3 hrs.
Physiological and growth responses of plants to environmental stresses, and consequences to the structure and function of communities and ecosystems. Prerequisites: 6 hours college-level biology.

BIO 564
Advanced Molecular Biology
3 hrs.
Selected topics in molecular biology. Emphasis on proteins and nucleic acids. Prerequisites: C or better in BIO 224.

BIO 565
Aquatic Ecology
3 hrs.
Emphasis on survival and dispersion of natural aquatic populations as related to environmental degradation in lakes, rivers, and streams. Prerequisites: 6 hours college-level biology or zoology.

BIO 566
Advanced Biochemistry
3 hrs.
Quantitative aspects of all areas of biochemistry. Emphasis on metabolism. Prerequisite: one semester of biochemistry or physical chemistry, or consent of instructor.

BIO 568
Cellular and Molecular Immunology
3 hrs.
Interaction between antigen presenting cells, B lymphocytes, and T lymphocytes to mount immune responses. Molecules responsible for immune interactions. Methods to study cell and molecular interactions in immunity. Prerequisites: BIO 564 or equivalent.

BIO 570
Seminar
1-3 hrs.
Selected topics in biological sciences. May be repeated under different topics for a maximum of 6 hours credit. Prerequisites: 3.0 grade point average in student’s major; senior or graduate standing; consent of instructor.

BIO 580
Readings
1-3 hrs.
Individual assignments of relevant topics in biological sciences. Prerequisites: 3.0 grade point average in student’s major; senior or graduate standing; consent of instructor.

BIO 585
Research
1-6 hrs.
Individual research for qualified students in special areas of biology. Prerequisites: 3.0 grade point average in student’s major; senior or graduate standing; consent of instructor.

BIO 681
Readings
1-6 hrs.
Readings in an area of interest to the student. Prerequisites: graduate standing and consent of instructor.

BIO 683
Research
1-6 hrs.
Research in an area of interest to the student. Prerequisites: graduate standing and consent of advisor.

BIO 699
Thesis
1-6 hrs.
Research and thesis preparation. Repeatable for up to 6 hours credit. A student can receive no more than a total of 6 hours credit in BIO 699 or CHM 699 or PHY 699. Prerequisite: consent of program coordinator.
Chemistry

Kurt W. Field,
Graduate Advisor

The Department of Chemistry has long offered a Master of Science degree in chemistry. The program is designed for students who are locally employed and wish to advance their knowledge and professional careers by taking advanced work in chemistry and related disciplines. Most courses are offered in the late afternoon or evening. Candidates for the M.S. degree must take a minimum of 30 semester hours in chemistry and related subjects. Of these hours, 6 semester hours must be devoted to original research. A publishable thesis is required for graduation based on this research. Of the remaining 24 semester hours, up to a maximum of 12 semester hours may be taken at the graduate level in cognate fields such as engineering, education, mathematics, business or biology. Individual programs are developed in conference between the student and the advisor.

Course Descriptions

CHM 500 Chemical Topics
1-3 hrs.
Topics of special interest which may vary each time course is offered. Topic stated in current Schedule of Classes. Prerequisite: CHM 351, 461.

CHM 509 Advanced Inorganic Chemistry
3 hrs.
Theoretical-descriptive approach to inorganic chemistry. Emphasis on dependence of selected chemical and physical characteristics of elements and compounds on extranuclear structure. Prerequisites: CHM 320, 461.

CHM 510 Advanced Inorganic Chemistry Laboratory
1 hr.
Laboratory work in inorganic chemistry. Prerequisite: CHM 509 or concurrent enrollment.

CHM 530 Advanced Analytical Chemistry
4 hrs.
Theory and applications of modern qualitative, quantitative, and instrumental methods. Prerequisite: CHM 320, 462.

CHM 550 Industrial Organic Chemistry
1 hr.
Survey of modern industrial organic chemistry; emphasis on petroleum derivatives. Prerequisite: one year of organic chemistry.

CHM 551 Advanced Organic Chemistry
3 hrs.
Organic reactions and reaction mechanisms. Prerequisite: CHM 351.

CHM 553 Qualitative Organic Analysis
4 hrs.
Laboratory: systematic identification of pure organic compounds; analysis of mixtures. Prerequisites: CHM 320, 351, 392.

CHM 630 Advanced Chemical Instrumental Analysis
3 hrs.
Modern chemical instrumental analysis: theory of operation of instruments and related chemical theory. Lecture and laboratory. Prerequisite: CHM 530.

CHM 652 Advanced Organic Chemistry
3 hrs.
Theoretical aspects of organic chemistry: stereoisomerism, conformational analysis, molecular rearrangements, and electronic interpretations of organic reactions. Prerequisite: CHM 551.

CHM 671 Reading in Chemistry
1-6 hrs. total
Directed reading for qualified students. Maximum of 3 hrs. per semester. Prerequisite: CHM 509 or 551.

CHM 683 Research
1-6 hrs.
Required of all candidates for the Master of Science degree in chemistry. Prerequisite: accepted thesis proposal.

CHM 699 Thesis
1-6 hrs.
Research and thesis preparation. Open to students in the MNS program only. Repeatable for up to 6 hours credit. A student can receive no more than a total of 6 hours credit in BIO 699 or CHM 699 or PHY 699. Prerequisite: consent of program coordinator.
Computer Science and Information Systems

Jiang B. Liu, Young Park, and Arnold Patton, Graduate Advisors

The Department offers graduate programs leading to the degrees of Master of Science in computer science and Master of Science in computer information systems. These courses of study are designed to prepare students for professional careers in the field of computing and information processing or for further study and research.

Computer scientists are developers of basic computer technology such as operating systems, language translators, data management software and other programming, processing, and operating aids to be used in conjunction with computer hardware. They are usually employed by computer manufacturers and software houses specializing in systems software. Computer information systems specialists are principally users of computer technology, usually in systems projects for applications in business, industry, or government.

In addition to satisfying all the Graduate School requirements for the degree, all candidates for the master's degree must satisfy the following departmental requirements:

1. At least 36 hours of graduate-level coursework.
2. No "D" grades can be counted in the completion of requirements for the degree.
3. Every student must pass a written comprehensive examination that will be based on the core requirements for the program pursued.
4. The Department of Computer Science and Information Systems has instituted a programming examination which all its graduate students must pass as part of their degree requirements. It is to be administered before the student has completed nine hours of graduate work. The students who fail are advised to take appropriate undergraduate courses before attempting the exam again. Students are to be given three opportunities to pass the examination. It is given early in the program in order to function as an effective diagnostic.

Interested and qualified students are offered the option of writing a master's thesis. Students selecting this option are encouraged to choose an advisor and topic as early as possible in order to plan the thesis development and any needed supporting coursework. The following policies apply to theses:

1. A minimum grade point average of 3.5 in computer science and computer information systems graduate courses is required for students enrolling in CS 699 (Thesis).
2. No student may register for CS 699 until 18 hours of graduate courses have been completed in the department.
3. Six credit hours of CS 699 are required and, upon completion, the thesis must be defended in an oral examination. No grade will be given for CS 699 until after the oral defense.
4. A written outline of the thesis project and a tentative schedule must be submitted to and approved by the graduate advisor and the chair prior to the registration for CS 699.

Admission requirements and graduation requirements specific to computer science and computer information systems are given below. Note that prospective students who do not meet the conditions for admission may be admitted conditionally, in which case the department will prescribe a program for the removal of such admission conditions. Conditional status must be removed prior to graduation.

Computer Science

In addition to meeting all the general requirements of the Graduate School and of the department as stated above, candidates for the master's degree in computer science must satisfy the following requirements.

1. At least 30 of the 36 hours required must be in computer science courses. At most, six hours may be earned in approved courses other than those labeled CS.
2. The following core requirements must be satisfied (either by taking the course or showing evidence of the completion of an equivalent course elsewhere): CS 503 or CS 615, CS 516, CS 518, CS 519, CS 550 or CS 643, CS 682, CS 609, CS 521 or CS 514.
3. Two of the following two-course sequences must be completed: CS 500 and CS 530, CS 615 and CS 616, CS 514 and CS 614, CS 521 and CS 522, CS 510 and CS 511, CS 519 and CS 570, CS 609 and CS 505.

For admission into the computer science program, a student must have completed discrete mathematics, at least two semesters of calculus, matrix or linear algebra, and at least one semester of calculus-based statistics; must have at least 15 hours of computer science coursework including knowledge of one structured or object-oriented programming language such as C/C++, elementary data structures, assembly language, advanced data structures, and introductory computer architecture; and must have approval of the Department.

Computer Information Systems

In addition to meeting all the general requirements of the Graduate School and of the department as stated above, candidates for the master's degree in computer information systems must satisfy the following requirements:

1. At least 21 of the 36 hours required must be in computer information systems or computer science courses.
2. A minimum of 12 hours must be taken in courses outside the department. These courses must form a coherent program in an applications area and must be approved by the graduate advisor.
3. The following core requirements must be met (either by taking the course or by showing evidence of having completed an equivalent course...
multimedia systems, user interface design, Gateway and Web-based applications, design and building of
Introduction to JAVA programming and PERL. Internet CS 500 JAVA Programming and Web Design
Computer Science
grade of C or better in CS 121 or equivalent.

Course Descriptions
Computer Information Systems

CIS 571 Computer Law
3 hrs.
Ethical considerations of computer scientists and computer-related security and privacy issues; copyright, patent, trademark, and trade secret issues, deceptive trade practices, computer crime, contract issues, venture capitalists, tax issues, computer torts, constitutional issues, and international trade considerations. Prerequisite: one semester of programming.

CIS 572 Computing Services Management
3 hrs.
Management of computing resources: planning for computing services; operational considerations; evaluation of service. Prerequisites: CS 310 or equivalent.

CIS 588 Introduction to Expert Systems
3 hrs.
Knowledge-based systems design and implementation; expert systems shells and programming environments; validation and implementation of expert systems; case studies/laboratories. Cross-listed as IE 588. Prerequisites: two semesters of programming and one semester of statistics, or consent of instructor.

CIS 606 Software Systems Design
3 hrs.
Planning, writing, debugging, and documenting large software systems. Consult with instructor for details on programming language to be used. Prerequisite: a grade of C or better in CS 121 or equivalent.

CIS 607 File Organization and Management
3 hrs.
File organizations and access methods. Sort/merge operations; hashing schemes for storage and retrieval. Projects involve data validation; creation and updating of files; simulation and/or implementation of direct and indexed files. Prerequisite: CS 121 or equivalent.

CIS 608 System Specification and Development
3 hrs.
Techniques and tools of system specification and development. Case studies; problems. Prerequisite: a grade of C or better in CS 121 or equivalent.

Computer Science

CS 500 JAVA Programming and Web Design
3 hrs.
Introduction to JAVA programming and PERL, Internet and Web-based applications, design and building of multimedia systems, user interface design, Gateway Interface (CGI) scripting; VRML. Prerequisite: CS 121 or equivalent.

CS 503 Programming Methodology
3 hrs.
Predicate calculus, Dijkstra’s methodology of algorithm development. Algorithm development. Algorithmic language characteristics; syntax, semantics. Postconditions and preconditions. Verification of postcondition states satisfied by algorithmic programs executed from preconditions. Problems. Prerequisites: a grade of C or better in both MTH 120 and CS 121.

CS 505 Advanced Topics in Databases
3 hrs.
Current trends in information technology. Hypertext navigation, intelligent navigation with expert systems and neural nets, multimedia, text management and retrieval, deductive and object-oriented databases, distributed databases, the integrated intelligent database. Prerequisites: CS 405 or equivalent.

CS 510 Numerical Methods I
3 hrs.
Continuation of CS/MTH 510: further techniques of integration, ordinary differential equations, numerical linear algebra, nonlinear systems of equations, boundary value problems, and optimization. Cross-listed as MTH 510. Prerequisites: CS 104 or 106; MTH 207 and 223.

CS 511 Numerical Methods II
3 hrs.
Design and analysis of algorithms. Dynamic structures maintenance and hashing. Searching, sorting, and traversal. Time and space requirements; simplification; computational complexity; proof theory and testing. NP-hard and NP-complete problems. Prerequisites: a grade of C or better in CS 302; one semester of statistics.

CS 516 Programming Languages
3 hrs.
Design concepts of high-level languages. Description languages; grammars and syntax; expressions and data structures; selection and control structures; constructs for input and output; subprograms and parameter communications. Prerequisite: CS 302 or 310.

CS 518 Programming Language Translation
3 hrs.
Overview of programming language translation with emphasis on modern compiler construction. Lexical analysis, parsing, syntax and semantic analysis, code generation, garbage collection, and optimization. Prerequisite: grade of C or better in CS 302. Corequisite: CS 516 or CS 216.

CS 519 Introduction to Operating Systems
3 hrs.
Design principles of software for operation of computers. Storage, processor, device, and file management as an integrated system; input/output control. Prerequisite: a grade of C or better in CS 302.
CS 521 Introduction to Artificial Intelligence
3 hrs.
Basic concepts and techniques of artificial intelligence: philosophical considerations, examples, pattern recognition, search strategies, game playing, knowledge representation, logic and resolution, planning, vision, natural language processing, programming in LISP. Prerequisites: a grade of C or better in CS 302.

CS 522 Neural Networks, Knowledge-based Systems, and Applications
3 hrs.
Theorem proving, logic programming, expert systems, uncertainty, fuzzy logic, machine learning, neural networks, programming in PROLOG. Prerequisites: a grade of C or better in CS 302; one course in statistics.

CS 530 Client-Server Computing with JAVA
3 hrs.
Continuation of CS 500. JAVA programming in client-server environment. JAVA distributed computing and distributed object computing protocols. Internet and object Web computing in JAVA. JAVA Enterprise computing technologies. Prerequisite: CS 500 or equivalent.

CS 535 Introduction to Computer Graphics
3 hrs.
Mathematics and algorithms of computer graphics: Device differences, lines, arcs, curves, transformations, input and output primitives. Data structures for geometric entities. Prerequisites: MTH 207, 223; CS 302.

CS 550 Advanced Computer Architecture
3 hrs.
Fundamental computer sub-systems: central processing unit; memory systems; control and input-output units. General purpose computing systems design. Examples from existing typical computers. Prerequisite: CS 350.

CS 570 Systems Performance and Modeling
3 hrs.
Techniques of modeling processes and the resources they share: intuitive, simulation, and analytical approaches. Performance prediction, bench marking, and synthetic loading. Prerequisites: a grade of C or better in CS 302 or CS 310; one semester of statistics.

CS 609 Database Management Systems
3 hrs.

CS 614 Parallel Algorithms
3 hrs.
Parallel algorithms for multi-processor computer architectures: concurrent programming, SIMD and MIMD systems, and time complexity. Prerequisite: CS 514.

CS 615 Software Engineering I
3 hrs.
Software engineering: technical management; project management, estimation, and control; economics; environments; standards; products and their phases. Prerequisites: a grade of C or better in CS 302 or CS 310.

CS 616 Software Engineering II
3 hrs.
Background and overview of software production: requirements for engineering and analysis; software specifications, design, coding, qualification, manufacture, support, and standards. Emphasis on a specific topic in software engineering. Prerequisites: a grade of C or better in CS 302 or CS 310.

CS 643 Data Communications and Distributed Computing
3 hrs.
Introduction to communication technologies. Emphasis on application to computer networks, information and coding theory, design considerations, and architecture, including topologies, implementation techniques, and standard distributed computing architectures. Prerequisites: MTH 120, 325; CS 519.

CS 682 Theory of Computation
3 hrs.
Theory of formal languages and computability. Automata, turing machines, grammars. Context-free and context-sensitive languages; parsing. Recursion theory; limits of effective computability. Unsolvability, reducibility, complexity. Prerequisites: a grade of C or better in CS 302.

CS 699 Thesis
3-6 hrs.
Computer science research and thesis preparation. Required of candidates choosing the thesis option. Total of 6 semester hrs. to be taken in one or two semesters. Prerequisite: consent of department chair.
English

Robert Prescott,
Graduate Studies Coordinator

The Master of Arts in English provides post-baccalaureate students with study in the theory and practice of English. It is intended to prepare students for professional advancement and for further study in either literature or writing. The literature track emphasizes the study of literary texts with related study of writing, theory, and methods. The literature track also requires an internship within the context of an undergraduate literature course, a portfolio of written work, and a written comprehensive exam over selected work taken in the program. The writing track emphasizes the study and practice of writing with related study of literature, theory, and methods. The writing track also requires an internship within the context of an undergraduate writing course, a portfolio of written work, and a written comprehensive exam over selected work taken in the program.

Because the master's program is predicated upon the complementary relationship between theory and practice in the study of English, both tracks of the program require ENG 500 Theory and Practice of English, another course in theory, and the internship. Students in either program not only will become familiar with the aesthetic, formal, and theoretical underpinnings of their field of study, but also will learn how to address their audiences by means of professional discourse. In this way, the program enriches students' professional lives and enhances their uses of the discipline in the classroom and the workplace.

Special Admission Requirements

In addition to the admission requirements of the Graduate School, the applicant shall present the following material with the application:

1. An essay of under 1500 words stating what the applicant expects to achieve from the study of English (literature or writing) at the master's level.
2. A writing sample (professional, critical, creative) that the applicant deems to be representative of the quality of his or her work. The sample may be an undergraduate paper, professional work, or work prepared for personal use. (The sample will not be returned. Submit a copy.)
3. Two letters of recommendation from references whose discipline is English literature or writing or from employers who have experience in the field of literature or writing. For those applicants who no longer have contact with either, the recommendations should be from those who can comment on the applicant's ability to benefit from a graduate program in English.

Programs of Study

Liberal Arts and Sciences 83

Courses in the English Program Enrich Students' Professional Lives and Enhances Their Uses of the Discipline in the Classroom and the Workplace.

Requirements should be from those who can comment on the applicant's ability to benefit from a graduate program in English.

Courses in the English Program Enrich Students' Professional Lives and Enhances Their Uses of the Discipline in the Classroom and the Workplace.

Requirements should be from those who can comment on the applicant's ability to benefit from a graduate program in English.
Liberal Studies

Max Taylor,
Director, Liberal Studies Program

Definition and Purpose

The purpose of the Master of Liberal Studies program is to provide motivated adults with opportunities to continue intellectual growth by integrating knowledge and perspectives from different disciplines in an innovative and challenging manner. The program introduces students to the pleasures and principles of science, the arts, technology, business, and the humanities as a means of exploring the problems and possibilities of life in modern society.

The program is designed for the adult student who wants a flexible part-time program offered during evening and weekend hours. Courses in the program bring Bradley's most distinguished faculty together with practitioners of business, education, law, medicine, journalism, and others who seek to understand the most controversial issues of the age and to extend their intellectual knowledge and vision.

Special Regulations

The M.L.S. degree meets the standards and policies of the Graduate School of Bradley University. But as with other programs, it has its own curriculum and integrity which require special regulations.

Admission

Admission to the M.L.S. program is limited to those who qualify for unconditional admission to the Graduate School. A personal letter of intent and an interview will be required in addition to the customary transcript and two recommendations.

Course Requirements

All work must be on the 600 level in M.L.S. courses. Thirty semester hours are required for the degree.

Transfer of Credit

The M.L.S. program ordinarily does not allow for transfer of credit. However, the Dean of Liberal Arts and Sciences will act on individual petitions.

Colloquium

In the final semester of the program, the candidate will participate in a colloquium with members of the M.L.S. faculty. The M.L.S. faculty in cooperation with each candidate shall devise the colloquium.

Course Descriptions

MLS 601 Physical Science Concepts and Society
3 hrs.
Great concepts of modern physical science and their impact on society. The scientists and their creative insights; influence of governmental policies on science.

MLS 602 Physics: Resonance With Reality
3 hrs.
Influence of historical and cultural notions (such as the world being organism, pure number, and total harmo-
ny) on creative minds of the West, and how these notions are enmeshed in modern physics theories and developments.

MLS 603 Origins, Structure, and Dependability of Information 3 hrs.
Eastern and Western attitudes in the 20th Century concerning the source, nature, and accuracy of human knowledge. Analysis of artistic creativity, psychological experiments of left and right hemispheric brain activity, and methods of scientific discovery.

MLS 604 Philosophical Foundations and Law 3 hrs.
“Law” as an idea and as seen from a general perspective. Existing and proposed laws are explored in terms of underlying, fundamental considerations to develop a meaningful concept of law in the context of the student’s own life.

MLS 605 A Philosophical Description of the Human Condition 3 hrs.
A rigorous investigation of our presuppositions about what a “better” way of being human should be, in context of developments in the life sciences that allow persons to alter or modify their own nature.

MLS 606 The Development of Social Thought 3 hrs.
Survey of theoretical perspectives for critical social science; emphasis on classic socio-economic thought of the 19th and 20th century. Construction of a theoretical framework for critical analysis of late industrial societies. Importance of Marxian theory to analyses of cultural forms and quality of everyday life. Relation of thought and social structures; doctrine of ideology; social organization of scientific and intellectual activities; processes of bureaucratization, rationalization, and alienation; social status; the role of intellectual activity in processes of revolution and social criticism.

MLS 608 American Egalitarianism and Mass Education 3 hrs.
Investigation of the ambivalence in American culture and educational philosophy between commitment to mass education as a force for democratization and suspicion of the educated as fostering an undemocratic elitism. The effects of this ambivalence on American education.

MLS 609 Popular Music and Poetry in the Twentieth Century 3 hrs.
Techniques and broad historical outlines of all forms of twentieth-century music and poetry. Emphasis on the interrelatedness of the two arts, and on familiar popular forms. Practice writing, analyzing, and criticizing popular music and poetry.

MLS 610 Weimar Germany: Culture and Politics Before Hitler 3 hrs.
Interdisciplinary, conceptual study of the profound changes that shaped the evolution of Weimar Germany. The disintegration of the values of old Germany, post-World War I alienation, and Weimar political and economic chaos as contrasted with the enormous creativity that brought forward exciting developments in art, film, architecture, science, literature, and popular culture.

MLS 611 Contemporary World Issues 3 hrs.
Sophisticated analysis of major contemporary international issues such as relations among industrial societies, the North-South dialogue, nationalism, and global economic problems. No more than four issues will be explored in depth in any one semester. Prerequisite: graduate standing.

MLS 612 Perspectives on United States International Relations 3 hrs.
In-depth analysis of United States foreign relations from North American, European, Asian, African, and Latin American perspectives. Prerequisite: graduate standing.

MLS 613 The Energy Situation: An Overview 3 hrs.
In-depth study of the U.S. and world energy situation, problems and methods associated with energy production, and effects of various factors such as population on the energy problem. Technical, social, economic, political, and moral implications of the energy situation. Prerequisite: graduate standing.

MLS 614 Cultural Dimensions of Psychological Theory 3 hrs.
Ideological roots of psychological science in American culture. Social science understandings of the good person and the good society.

MLS 615 Philosophy, Psychology, and Religion in the Works of William James 3 hrs.
How William James brought together studies in psychology, philosophy, and religion to develop a comprehensive theory of human nature. James’s writings as an exemplary attempt to build a model of human experience in its many and varied expressions (philosophical anthropology).

MLS 616 Female and Male: Origins of Sex Differences in Behavior 3 hrs.
Critical analysis of research findings and theories concerning the origin and development of differences in the behaviors of females and males; psychological, sociological, and biological factors.

MLS 617 All Reality is Astronomy 3 hrs.
The impact of astronomy on our present culture; our place in the cosmic environment. Planetarium scenarios and models display visually how various cultures in the past viewed our place in the universe, and also project modern cultural and cosmic views and theories. A cooperative venture with Lakeview Planetarium.

MLS 618 Controversial Issues in Biology 3 hrs.
A detailed examination of the important topical issues that are currently under intense debate in biology. Topics such as genetic engineering, the patenting of life forms, sperm banks, and nuclear waste disposal discussed from a scientific, political, moral, and religious point of view.
MLS 619 Controversial Psychological Issues and Society
3 hrs.
Topics in psychology that have stirred heated controversy in both the professional and public arenas because of their potential impact on individuals and on society. Topics such as control of human behavior, use of psychosurgery, effectiveness of psychotherapy, effects of televised violence, and states of altered consciousness.

MLS 620 Literature and Society
3 hrs.
The primary "social" theories of literature; the relationships between society and literature as an institution; and literary documents themselves.

MLS 621 Communicating Change and Innovation
3 hrs.
Basic communication principles used in creating change and having change and innovation accepted by people and/or organizations. Practical examples used to demonstrate effective communication channels and means for getting change accepted.

MLS 622 La Tissue Urbaine: The City as a Living Organism
3 hrs.
Physical structure or tissue of human settlements; urban emphasis. Their physical evolution, common universal characteristics, and unique differences; their value, importance, and integrity. The ideal or utopian human settlement. Global and local examples. Prerequisite: enrollment in the M.L.S. program.

MLS 623 Death and Dying: An Interdisciplinary Inquiry
3 hrs.
Interdisciplinary investigation of the human experience of death. Modernism and death, religion and death, euthanasia, the mourning and bereavement process, psychoanalytic interpretation of death anxiety.

MLS 624 The North American Frontier in Literature
3 hrs.
Literature relating to the North American Frontier as both a body of themes and as a group of conditions surrounding literature: gender, genre, language, region, and nationalism. United States, Canadian, Colonial, and European literatures.

MLS 625 Music and Western Society
3 hrs.
Relationship of music to other areas of human endeavor. Basic elements of music; various beliefs and myths about music. Required concert attendance.

MLS 626 Three Ideas That Formed Western Culture
3 hrs.
Diagnostic examination of the origins in Greek, Hebrew, and Roman antiquity of three pillars of Western culture: Protestant Christianity, natural science, and democratic self-government. Prerequisite: graduate standing.

MLS 627 Religion in the Modern World
3 hrs.
Sociological, psychological, and philosophical issues confronting religion in the late twentieth century.

MLS 628 The Western Legal Tradition
3 hrs.
A survey of Western legal history from the Roman Republic to the present.

MLS 629 Critical Thinking & Reasoning
3 hrs.
Study of critical thinking, defined as the ability to weigh evidence judiciously in making decisions. Application of the scientific method to everyday decision making. Examination of examples from a broad array of disciplines and media. Prerequisite: graduate standing.

MLS 630 Nature Writers and Writing
3 hrs.
Selected American nature writers from Thoreau to the present, concentrating on the cultural implications of the genre for writers, general readers, and environmentalists.

MLS 631 Controversial Legal Issues
3 hrs.
An analysis of controversial legal issues and the arguments that support them, with emphasis on contemporary conflicts. Prerequisite: graduate standing.

MLS 632 The Pacific Century: US Asian/Pacific Relations Since 1900
3 hrs.
Examines America's role and influence in the rise of Japanese and Chinese power and the meaning and significance of the Korean and Vietnam wars.

MLS 690 Independent Study
3 hrs.
Student pursues a topic of interest in depth under the guidance of a single instructor. Subject must naturally evolve from study undertaken in one or more courses in the student's MLS program. To be undertaken only after 21 semester hours have been completed.
Supportive Courses

The following courses are offered by departments in liberal arts and sciences to graduate students and qualified undergraduates. Graduate students who intend to use them as an integral part of their degree program should consult both their graduate advisor and the chair of the department concerned.

Geological Sciences (Earth Science)

GES 505 Field Observation in Natural History 4 hrs.
For non-majors: field oriented investigation of diverse topographic forms, mountain structures, and materials composing the earth. Develops understanding of rapidly deteriorating environment through observation of geophysical, astronomical, and biological variations. One week of classes; three week bus trip to marine station, and return. Not open to undergraduate geological sciences majors.

GES 546 Groundwater Hydrology and Hydraulics 3 hrs.
Groundwater in the hydrological cycle, fundamentals of groundwater flow; flow net analysis; steady-state and transient well testing techniques for parameter estimation; multiple well systems; leaky aquifers; sea water intrusion; groundwater investigation; artificial recharge of aquifers, design of wells; subsidence and lateral movement of land surface due to groundwater pumping. Design and computer applications. Cross listed as CE 546. Prerequisites: CE 202, 304, or consent of instructor.

GES 691 Directed Study in Geological Sciences 1-4 hrs.
Projects designed to supplement departmental offerings in geological sciences. Prerequisite: consent of instructor.

History

HIS 505, 506 Seminar in Directed Reading 1-3 hrs. each
Program of directed readings; analysis, synthesis, and interpretation of materials. Prerequisites: senior or graduate standing; 15 hrs. of college-level history with at least a B average; consent of department chair.

HIS 507, 508 Area Study in Directed Reading 1-3 hrs. each
Projects and readings in area studies; e.g. Asia, Russia, Africa, or South America. Prerequisites: 15 hours of college-level history with at least a B average; consent of department chair.

Mathematics

MTH 501 Topics in Applied Mathematics I 3 hrs.
Theory, applications, and algorithms for basic problems of modern applied mathematics. Symmetric linear systems, minimum principles, equilibrium equations, calculus of variations, orthogonal expansions, and complex variables. Prerequisite: MTH 224 or 345.

MTH 502 Topics in Applied Mathematics II 3 hrs.
Continuation of MTH 501. Selected numerical algorithms: Fast Fourier transform, initial value problems, stability, z-transforms, and linear programming. Prerequisite: MTH 501 or consent of instructor.

MTH 503 Complex Variables II 3 hrs.
Continuation of MTH 403. Advanced topics in complex analysis. Prerequisite: MTH 403 or consent of instructor.

MTH 510 Numerical Methods I 3 hrs.
Introduction to numerical and computational aspects of various mathematical topics: finite precision, solutions of non-linear equations, interpolation, approximation, linear systems of equations, and integration. Cross listed as CS 510. Prerequisites: CS 104 or 106; MTH 207 and 223.

MTH 511 Numerical Methods II 3 hrs.
Continuation of CS/MTH 510: further techniques of integration, ordinary differential equations, numerical linear algebra, nonlinear systems of equations, boundary value problems, and optimization. Cross listed as CS 511. Prerequisites: MTH 224 or 345; CS/MTH 510.

MTH 514 Partial Differential Equations 3 hrs.
Fourier series and applications to solutions of partial differential equations. Separation of variables, eigenfunction expansions, Bessel functions, Green’s functions, Fourier and Laplace transforms. Prerequisite: MTH 224 or 345.

MTH 515 Finite Element Analysis 3 hrs.
Mathematics of finite elements, variational and residual methods, error analysis, element analysis, ordinary and partial differential equations, various boundary conditions, and selected applications. Prerequisite: MTH 224 or 345.

MTH 590 Special Topics 3 hrs.
Topics of special interest which may vary each time course is offered. Topic stated in current Schedule of Classes. Prerequisite: consent of instructor.

Philosophy

PHL 551, 552 Readings in Philosophy 1-3 hrs. each
Directed individual study. Prerequisites: 6 hours in philosophy; senior or graduate standing; consent of department chair.

Physics

PHY 501 Quantum Mechanics I 3 hrs.
Inadequacies of classical physics when applied to problems in atomic and nuclear physics. Development of mathematical formalism used in basic quantum theory. Applications to simple models of physical systems. Prerequisites: PHY 202, 301, 306; consent of instructor. MTH 207 recommended.
PHY 502 Quantum Mechanics II
3 hrs.
Mathematical formalism of quantum mechanics. Applications to problems of electron spin and many-particle systems. Development of approximation techniques with applications to complex physical systems. Prerequisite: PHY 501.

PHY 539 Topics in Theoretical Physics
3 hrs.
Topics of special interest which may vary each time course is offered. Topic stated in current Schedule of Classes. Prerequisites: PHY 301, 305, 501; or consent of instructor.

PHY 541 Physics Basics
2 hrs.
Numerical and graphical analysis of data; basic mechanics including Newton’s laws and gas laws; hydrostatics and hydrodynamics; energy conservation principles; thermal physics; electricity and magnetism; and solubility and transport processes. Only students in the Nurse Administered Anesthesia Program may register.

PHY 545 Biophysics
3 hrs.
Applications of physics principles and methods to investigation of biological systems. Emphasis on physical environmental effects on biological systems. Cross listed as BIO 545. Prerequisites: PHY 108 or 201; senior standing; or consent of instructor. PHY 345 recommended.

PHY 555 Independent Readings
1-3 hrs.
Individual assignments of relevant topics in physics or astronomy. Prerequisites: senior or graduate student standing; background appropriate to the study; consent of instructor.

PHY 563 Special Problems in Physics
1-3 hrs.
Qualified students work on an individually assigned problem and prepare oral and written reports on the problem solution. Approved for off-campus programs when required. May be repeated for a maximum of 6 hours credit. Prerequisites: physics preparation sufficient for the problem; consent of instructor and Department Chair.

PHY 568 Condensed Matter Physics
3 hrs.
Introduction to condensed matter physics for students of physics, materials science, and engineering. Structure of crystals; binding energy of solids; thermal properties; semiconductors; superconductivity. Prerequisites: MTH 224, PHY 501; consent of instructor.

PHY 699 Thesis
1-6 hrs.
Research and thesis preparation. Open to students in the MNS program only. Repeatable for up to 6 hours credit. A student can receive no more than a total of 6 hours credit in BIO 699 or CHM 699 or PHY 699. Prerequisite: consent of program coordinator.

Political Science
PLS 583, 584 Reading in Political Science
1-3 hrs. each
Individual in-depth work on a subject approved and supervised by a PLS faculty member. For highly qualified students. Prerequisites: senior standing; political science major; consent of instructor.

Psychology
PSY 681, 682 Readings I, II
1-3 hrs. each
Readings in area selected by student. Prerequisites: graduate standing and prearrangement with instructor.

PSY 691, 692 Research I, II
1-3 hrs. each
Research in area selected by student. Prerequisites: graduate standing and prearrangement with instructor.

Sociology
Undergraduate registration in any 500-numbered course requires the permission of the chair of the sociology department.

SOC 571 Field Studies
1-3 hrs.
Individual research. Prerequisite: senior or graduate standing and consent of department chair.