The College of Engineering and Technology offers programs leading to: the Master of Science in Civil Engineering, Master of Science in Electrical Engineering, Master of Science in Industrial Engineering, Master of Science in Mechanical Engineering, and the Master of Science in Manufacturing Engineering. Students majoring in engineering are required to complete from 30 to 33 semester hours of coursework, depending on the program they are pursuing. Students should consult the department graduate advisor for a plan of study prior to registration.

For international graduates of a non-ABET-accredited program (unless from an English speaking country), a minimum TOEFL score of 525 is required for unconditional admission. The GRE is required by some departments and suggested for others.

A cumulative GPA of 3.0 for the entire undergraduate career or 3.0 for the last 60 credit hours is normally needed for unconditional admission. However, some programs may have other requirements for unconditional admission. Prospective graduate students who have a GPA below 3.0 or a TOEFL score below 525 may be admitted conditionally. TOEFL and GRE scores are taken into consideration for admission and when making assistantship award decisions.

Special Academic Programs

Practicum

Graduate students enrolled in chemistry, civil engineering, computer science, electrical engineering, industrial engineering, manufacturing engineering, mechanical engineering, and physics may have an opportunity for employment for 10-20 hours per week in a practicum program that partners industry and the university. Generally, the practicum is on-site work in an industrial setting. Students are assigned technically challenging projects with a near-term economic significance. Participating students will be enrolled in EGT 500 for zero credit hours.

Internship

Engineering internships provide engineering students an opportunity to participate in a full-time internship semester and/or summer away from campus providing career-related work experience. This internship is equivalent in work-time to a full-time cooperative education assignment, and interns will be monitored in the same way as EGT cooperative education students. Participating graduate students will enroll in EGT 510 for zero credit hours. While on a full-time internship assignment, students are considered to have full-time student status, making normal progress toward a degree in a recognized University program, and are entitled to all student privileges at the University. Also while on a full-time internship assignment, students may register for additional hours of classroom study upon departmental approval.
Course Descriptions

EGT 500 Graduate Engineering Practicum
0 hrs.
Solving challenging problems with a near-term economic benefit. Only for students approved for practicum by the Dean’s Office. Pass/fail. Prerequisite: graduate student.

EGT 510 Graduate Engineering Internship
0 hrs.
Full-time internship away from campus for engineering & technology students to gain academic or career-related work experience in industry. May be repeated only with consent of internship coordinator and internship faculty advisor. Satisfactory/Unsatisfactory. Prerequisites: engineering and technology graduate student. Newly admitted graduate student must be unconditionally admitted and continuing student must have a minimum of 3.0 grade point average in graduate courses. Approval of internship coordinator and internship faculty advisor.

Civil Engineering

Robert Fuessle, Graduate Advisor

The Department of Civil Engineering and Construction offers an MSCE degree program that prepares graduates for thriving engineering careers characterized by continued professional growth. Our graduates are given unique opportunities to acquire the talents and skills needed in a highly technical society facing serious uncertainties and challenges in the environment and infrastructure. Our program provides you with the broad scope necessary for a fruitful and successful career in the practice of civil engineering and construction management.

To meet the needs of industry and students, the department recently acquired a multimedia laboratory and equipped it with the most sophisticated software and hardware available anywhere in the country. This recent acquisition provides a vivid example of the commitment to excellence and persistent drive that has become the hallmark of our department. The departmental goal is to provide an educational experience that is nationally and internationally recognized. Our students and faculty aspire to be leaders in their respective fields on and off campus.

Financial Support
Research and teaching assistantships are available for qualified graduate students through the department and ongoing funded research projects. Currently more than 60% of all graduate students are being supported. The department has numerous endowed scholarships, and some of these funds provide fellowships to selected graduate students. Qualified students may also receive up to 100% tuition waiver from the University. Additionally, faculty and graduate students have received research grants from major companies, state agencies, the National Science Foundation, and other private and government sources.

Students have abundant opportunities to gain practical experience off campus either part-time or full-time during semester breaks and summers. For example, the Illinois Department of Transportation has hired many graduate students. Various industries have employed our graduates under a pollution prevention program sponsored by the Illinois EPA.

Internationalization and Our Global Explorer Program
The Global Explorer program is designed to expand the professional capabilities, stimulate intellectual growth, and broaden the personal perspectives of all participants. Arrangements have been made with universities around the world to send our students either for short courses or for the entire academic year. Students with financial need have received financial support that enables them to study abroad for equal or less than what it would cost them to study at Bradley University. This program enables students to meet the challenges of tomorrow and equips them with the needed skills to compete in an international marketplace.

Programs of Study
The graduate program can be characterized by areas of concentration: construction management, structures, and geo-environmental/water resources. New course offerings have been introduced in multimedia, pavement and superpave, GIS/GPS, and transportation systems.
Construction Management The construction industry is the largest industry in the United States. Its impact is felt in every area of civil engineering, both nationally and internationally. This fast-growing area provides courses that enhance the education of students by examining the most recent trends and methods in the management of the construction process. Opportunities are provided through coursework dealing with advanced cost estimating, contract administration, productivity analysis, total quality management (TQM), cutting-edge software dealing with design/build processes and multimedia presentations, and many other areas that affect the profession.

Structural Engineering The graduate courses in the structural program offer a wide variety of courses that provide a strong theoretical and applied background suitable for both practice and research. The structural engineering group has five faculty members with a diverse academic background. The group employs experimental, numerical, and analytical techniques in their research activities. The research interests within the group include: behavior and design of reinforced concrete, structural durability, analysis and design of bridges, finite element analysis, computational mechanics, structural stability, and seismic analysis and design of structures.

Students are given the opportunity to utilize a spectrum of computer facilities, including a networked personal computer and workstations. These computers are equipped with state-of-the-art software packages. The well-equipped structures laboratory provides state-of-the-art research tools. Among them are an MTS 80 kips Cyclic Testing System, NI data acquisition system, a large number of transducers and LVDT’s, Universal Testing Machine, and an ELE compression testing machine.

Geo-Environmental Engineering This program option meets the growing need for professionals who are well educated in the science and engineering of treatment processes and pollutant transport and impact on the environment. The program also addresses the need for more informed decision-making with respect to environmental risks and impacts. Graduates from this program are employed by governmental agencies, by consulting companies that specialize in environmental engineering and environmental planning, and by industrial manufacturing companies in pollution prevention or environmental control rules. Funded research from Caterpillar Inc. and from regional and national environmental agencies provides an opportunity for graduate students to participate in the research of hazardous waste treatment, biological wastewater treatment, physico-chemical treatment, and management models of environmental policies and systems.

Facilities The Department has major laboratories with state-of-the-art equipment in multimedia, Archicad, geo-technical, concrete, asphalt, environmental, surveying, structural, microcomputers, construction, design, projects, research, and fluids. Our students have 24-hour access to a spectrum of computer facilities, including networked personal computer and workstations. These computers are equipped with cutting edge software packages in structural, geotechnical, environmental, and construction management. The CEC laboratories include needed instrumentation for education and research. For example, the structural laboratory includes an MTS 80 kips Cyclic Testing System, NI data acquisition, a universal testing machine, and an ELE compression testing machine. The environmental laboratory includes a gas chromatograph with purge trap, atomic absorption spectrophotometers, and FTIR. The asphalt laboratory is being updated to include Superpave testing equipment. These laboratories are well equipped to meet the educational needs of graduate students and faculty.

Career Services Graduate students have numerous opportunities to develop through professional activities such as the student chapters of ASCE and AGC. These organizations sponsor noted speakers on a variety of topics and provide a forum for interaction between students and industry. In addition, graduate students may become involved with community projects such as the Bridge Pal program that fosters engineering interest in high school seniors.

The departmental advisory board is composed of successful civil engineers and construction leaders. Advisory board members are very active as speakers and outside professional contacts for our students. The departmental director for job placement also helps our students with their search for employment.

Faculty Qualifications The faculty are renowned worldwide and have published more textbooks (25) than any other civil engineering or construction department of similar size in the United States. These textbooks are used at a large number of highly regarded institutions. CEC faculty members have received numerous awards for teaching excellence and scholarship. Faculty have also conducted research for national, state, and local sponsors that have benefited our students.

MSCE Degree Requirements After selecting core courses, the student may study in any one of three areas of concentration: construction management, structural, or geo-environmental/water resources. The student has the opportunity of selecting a thesis or a non-thesis option. The thesis option requires 6 semester hours of CE 699 (Thesis). The non-thesis option requires a minimum of 6 semester hours in an area of concentration. Both options require a minimum of 3 semester hours of mathematics and 18 semester hours in CE courses. The MSCE program requires a minimum of 30 semester hours beyond the bachelor’s degree.

In addition to the requirements of the Graduate School, the Department of Civil Engineering and Construction has the following requirements:
1. The MSCE program requires a minimum of 30 semester hours beyond the bachelor’s degree.
2. All MSCE students are required to take CE 510 to meet the mathematics requirement and a minimum of 18 semester hours from the department.
3. A plan of study is required by the end of the first semester. The plan may be changed by filing a request for amendment. This request must be filed with and approved by the graduate advisor prior to registering for courses. Courses not on the approved study plan may not be counted towards the MSCE degree.
4. Admission of undergraduate students into 500-level courses requires that the student have the necessary prerequisites and a minimum average of 2.50/4.0 in the major field.

5. Admission into the MSCE program requires a bachelor’s degree in civil engineering or construction. Qualified graduates from other engineering or related fields may be admitted conditionally. The conditional status may be changed to unconditional only after all deficiencies are removed.

6. Each student is required to pass a comprehensive examination during the last semester of his/her study. Students seeking the thesis option are required to make oral defense of their thesis instead.

Exceptions to the departmental requirements listed above may be made with the approval of the department chair. Such exceptions are rare and will only be granted in cases where clear justification can be demonstrated.

Course Descriptions

CE 504 Advanced Hydraulics
3 hrs.
Hydraulic transients in pipeline and open channel flow; gradually varied, spatially varied, and rapidly varied flow in open channels; sedimentation mechanics, stream channel mechanics. Computer and design applications. Prerequisite: CE 304.

CE 508 Advanced Soil Mechanics
3 hrs.
Consolidation theory and settlements, stress-path method, strength and deformation behavior of soils, failure theories, confined flow, flow nets, numerical analysis of flow, unconfined flow, seepage through earth dams. Laboratory experiments on consolidation and shear strength. Prerequisites: CE 308.

CE 510 Advanced Numerical Methods with Engineering Applications
3 hrs.
Selected numerical methods and applications chosen to meet current needs for solving problems in civil engineering. Prerequisite: CE 202 or equivalent.

CE 511 Advanced Mechanics of Materials
3 hrs.
One, two, and three dimensional stresses and strains at a point; theories of elastic strength; effect of loading on the member; torsion of noncurricular sections; curved beams; unsymmetrical bending. Prerequisites: CE 301; senior or graduate standing; consent of instructor.

CE 518 Subsurface Flow in Porous Media
3 hrs.
Fundamentals of groundwater flow; theory of flow in anisotropic media; transient well testing techniques; analytical and computer solutions of flow problems; dispersion phenomena. Cross listed as GES 518. Prerequisites: MTH 224; senior or graduate standing in geology or civil engineering.

CE 530 Prestressed Concrete
3 hrs.
Theory and analysis of prestressed concrete members by various methods of prestressing; linear and circular prestressing, design of simple and continuous beams and slabs; extensive study of materials used in prestressed concrete. Prerequisites: CE 403, 359; senior or graduate standing; consent of instructor.

CE 545 Structural Dynamics
3 hrs.

CE 555 Solid and Hazardous Waste Management
3 hrs.
Toxicological, risk assessment, and regulatory aspects of solid and hazardous waste management; characterization of hazardous wastes and materials; waste reduction strategies; collection, storage, and transportation methods; engineering processes for the chemical, biological, and physical treatment of toxic and hazardous wastes; remediation of contaminated soil and groundwater at existing disposal sites. Prerequisite: CE 360.

CE 557 Analysis of Environmental Systems
3 hrs.
Areas of environmental engineering not covered in CE 360: pollutant transport in air, surface water, and groundwater; environmental management of air and water resources. Prerequisites: senior or graduate standing; consent of instructor.

CE 558 Industrial Waste Treatment Process Design
3 hrs.
Industrial survey and treatment technologies for liquid, solid, and gaseous wastes. Mixing of wastes and stream sanitation. Applications and design of treatment processes with emphasis on the aqueous chemistry of heavy metals and organic contaminants. Applied electrochemistry and redox reactions, and interfacial phenomena. Prerequisite: CE 360.

CE 559 Management Models in Environmental Engineering
3 hrs.
Development, solution, and interpretation of management models used in environmental planning and management; mathematical programming techniques from operations research; trade-off analysis and risk assessment; management problems for conventional and toxic wastes in surface water, groundwater, and air. Prerequisite: CE 360.

CE 562 Advanced Structural Design I
3 hrs.
Multi-story steel frame analysis and design; rigid frame design; plate girder design. Extensive use of computer for design and analysis. Prerequisites: CE 359, 442; senior or graduate standing; consent of instructor.

CE 580 Advanced Cost Estimating for Construction Projects
3 hrs.
Cost estimating for material, equipment, and labor for construction projects. Taking-off quantities, pricing techniques, computer estimating, and bidding strategy models. Prerequisites: IE 301; consent of graduate advisor.
Electrical Engineering

S.N. Prasad,
Graduate Advisor

The Department of Electrical and Computer Engineering and Technology offers a graduate program leading to the degree Master of Science in Electrical Engineering. The curriculum is structured to give the graduate of the program a balanced technical background in core areas of modern electrical engineering and a significant experience in advanced design via a thesis or a project.

Students work closely with a faculty advisor in tailoring an overall program best suited to their background and interests. Course sequences, design projects, and research are available in applied electromagnetics, communication theory, control theory, digital systems and computers, electronics and microprocessor applications, power systems, and signal processing. The ECET department has excellent computer and/or laboratory facilities to support advanced studies in these areas. Applicants from non-ABET-accredited schools of engineering are required to take the general test of the GRE.

Degree Requirements

A total of 33 semester hours is required for the degree and all students must do either a thesis (thesis option) or design project (design option). The specific requirements for each option are as follows:

Thesis Option

- EE 501 Principles of Electrical Engineering Design, 3 hours
- Thesis, 6 hours
- 18 hours of electrical engineering courses with two 6-hour specializations
- 6 hours of EE or approved technical electives

Design Option

- Graduate design seminar, 3 hours
- Design Project, 3 hours
- 21 hours of electrical engineering courses with two 6-hour specializations
- 6 hours of EE or approved technical electives

Approved technical electives are chosen from graduate courses offered by departments other than electrical engineering, such as computer science, math, physics, or mechanical engineering. The one-semester EE 501 Principles of Electrical Engineering Design introduces the student to advanced design techniques via several projects in key areas of electrical engineering, and supplies an excellent foundation for thesis or project work. Students who are unconditionally admitted may replace the EE 501 Principles of Electrical Engineering Design with a graduate electrical engineering course if they have...
adequate design experience in their background. Such students must petition the ECET graduate committee and supply appropriate documentation. Students receiving a grade of less than "B" in the EE 501 Principles of Electrical Engineering Design may have to take remedial work including courses for which graduate credit cannot be earned. All students must pass a comprehensive exam in their last semester as required by Graduate School regulations.

Typically, an undergraduate electrical engineering degree is required for admission. However, plans of study are available for those with non-electrical engineering or non-engineering undergraduate degrees. These plans require a number of undergraduate foundation courses to be successfully completed. Further information can be obtained by contacting the ECET graduate advisor.

Course Descriptions

EE 501 Principles of Electrical Engineering Design
3 hrs.
Analog, digital, and software design experiments: use of instrumentation transistor amplifiers and switches, operational amplifiers, active and passive filters, digital logic, microcontrollers, and signal processing circuits. Use of computer-aided design and simulation tools for system analysis and design. (Cannot be used to satisfy MSEE elective.) Prerequisite: BSEE degree or consent of the department chair.

EE 530 Random Variables and Signals
3 hrs.
Correlation functions; power-density spectra; transmission of random signals through linear and non-linear systems; linear mean square estimation. Prerequisite: EE 302 or graduate standing.

EE 531 Communication Theory
3 hrs.
Optimum filtering; analogue and digital communication; detection theory. Prerequisite: EE 530.

EE 532 Information Theory
3 hrs.
Coding theory; memory and memoryless systems. Prerequisite: EE 530.

EE 533 Digital Image Processing
3 hrs.
Design of computer-based imaging systems; multidimensional filtering and quantization methods for image enhancement, restoration, and pattern recognition. Prerequisite: EE 302 or MTH 325.

EE 534 Digital Signal Processing
3 hrs.
Representation and analysis of discrete time signals and systems. Finite and infinite impulse response filter design; computer-aided-design; Fast Fourier Transform; implementation of digital filters. Prerequisites: EE 302.

EE 540 Dynamic Systems Analysis
3 hrs.
Advanced techniques for analysis of electrical, mechanical, and electromechanical systems. State function concepts are emphasized with methods for determining state equations, system stability, and control. Prerequisite: EE 302 or graduate standing.

EE 550 Electromagnetic Theory
3 hrs.
Time-varying electric and magnetic fields; Maxwell’s equations; plane waves in conducting and dielectric media; transmission lines; wave guides; antennas. Prerequisite: EE 381.

EE 551 Radio Frequency Circuits and Systems
3 hrs.
Review of transmission lines, impedance matching and transformations, S-parameters, passive R.F. junctions, R.F. amplifier design, R.F. systems, and front end design. Prerequisites: EE 205, 206.

EE 561 Digital Systems: Logic Design
3 hrs.
Boolean algebra; logical design; storing and switching phenomena. Prerequisite: EE 304 or graduate standing.

EE 562 Digital Systems: Computer Structures
3 hrs.
Use of hardware programming language to design a small computer or other digital system; busing; control units; interfacing; transfer design. Prerequisite: EE 201.

EE 563 Advanced Electronics - VLSI System Design
3 hrs.
Design and implementation of very-large-scale integrated systems (VLSI). Integrated circuit devices, subsystems, and architecture. Computer-aided-design (CAD) and design testing. Prerequisites: EE 304 or graduate standing.

EE 565 Digital Systems: Microprocessor and PC Architecture
3 hrs.
Architecture of PC-compatible computers; 32-bit processor architecture and assembly language programming; standard buses. Design of peripheral cards to interface with the standard PC bus architectures. Prerequisites: EE 365 or consent of instructor.

EE 566 Digital Systems: Memory and Interfacing
3 hrs.
Design of single-board computers using 32-bit processors; processor architecture and assembly language programming. Introduction to RISC processors. Prerequisites: EE 365 or consent of instructor.

EE 571 Semiconductor Electronics
3 hrs.
Qualitative and quantitative study of electronic and thermal properties of semiconductor materials and devices. Prerequisite: PHY 501.

EE 575, 576 Power Systems I, II
3 hrs. each
Analysis of electric power systems; fault studies; load flow; economic loading; stability; relaying; high voltage DC transmission; lightning and switching transients. Prerequisite: senior or graduate standing in EE. EE 575 is prerequisite for EE 576.

EE 631 Advanced Communication Theory
3 hrs.
Continuation of Electrical Engineering 531. Prerequisites: EE 531, 540.
EE 642 Advanced Control Systems
3 hrs.
Continuation of EE 540. Prerequisite: EE 540.

EE 643 Optimal Control Systems
3 hrs.
Analysis and design of multivariable control systems: stability, observability and controllability, deterministic/stochastic linear optimal regulator and observers, and multivariable stability robustness. Prerequisite: EE 540 or permission of instructor.

EE 651 Advanced Electrodynamics
3 hrs.
Continuation of EE 550. Special theory of relativity; plasma dynamics. Prerequisites: EE 540, 550.

EE 681, 682 Research
3-6 hrs. each
Graduate research on a project selected by student and advisor.

EE 691, 692 Topics in Electrical Engineering
1-3 hrs. each
Topics of special interest which may vary each time course is offered. Topic stated in current Academic Handbook.

EE 699 Thesis
3-6 hrs.
Advanced electrical engineering research or design under the guidance of a faculty advisor. Required of students choosing thesis option. Total of 6 semester hours to be taken in one or two semesters. Prerequisites: consent of Department Chair; unconditional status.

Industrial & Manufacturing Engineering & Technology

The Department of Industrial & Manufacturing Engineering & Technology offers two graduate programs leading to the Master of Science degree: M.S.I.E. in industrial engineering and M.S.Mf.E. in manufacturing engineering.

These degree programs respond to a wide range of manufacturing and service industry needs.

Each program has a graduate advisor. The admission requirements for each are stated in the following program statements.

Industrial Engineering
Fariborz Tayyari,
Graduate Advisor

The Industrial & Manufacturing Engineering & Technology Department offers a graduate program leading to the M.S.I.E. degree stressing the role of industrial engineers as problem solvers at managerial and staff levels in both manufacturing and service industries. The program offers students the opportunity to customize a plan of study, beyond an IE core, based on the student’s educational background and career objectives. Courses will be drawn from such disciplines as engineering, science, mathematics, and business administration.

Admission is selective and is open to holders of an undergraduate degree in engineering, science or mathematics who meet Graduate School admission requirements. Students without an IE undergraduate degree may be required to make up undergraduate deficiencies. Those who do not have an engineering degree should have worked in an engineering environment for at least three years. International graduates of a non-ABET accredited program should have a TOEFL score of 550 for unconditional admission and a score of 52 on part 1 of the test. Both part-time and full-time students are welcome.

Degree Requirements

The total program is 30 semester hours of graduate level work of which a minimum of 18 hours must be taken from IE designated courses, including 3 semester hours of a project course to demonstrate ability to identify, define and solve unstructured IE related problems. Most entering students who do not have the undergraduate degree in IE must complete IE 500, Engineering Economy and Costs, and IE 503, Engineering Quantitative Analysis. Neither will count towards graduate credit. A 36-hour, non-project program is also available.

A course of study must be prepared by each student in consultation with the academic advisor and must be approved by the department as early as possible but
not later than the beginning of the second semester of study at Bradley.

Course Descriptions

IE 500 ENGINEERING ECONOMY AND COSTS
3 hrs.
Analysis of the economic aspects of engineering decisions including the time value of money and the techniques of obtaining cost data. Does not count toward MSIE. Prerequisite: graduate standing in engineering or consent of instructor.

IE 503 ENGINEERING QUANTITIVE ANALYSIS
3 hrs.
Probability, random variables, distributions, inference, regression, linear programming, simulation. Does not count towards MSIE. Prerequisite: graduate standing in engineering or consent of instructor.

IE 511 ENGINEERING STATISTICAL ANALYSIS
3 hrs.
Concepts in probability and statistics from practical and theoretical angles. Definition of probability, random variable, distribution, important discrete and continuous distributions, sampling distribution of X-bar, Central Limit Theorem, t, chi-squared and F distributions, estimation, hypothesis testing, regression analysis, and analysis of variance. Prerequisite: IE 503 or consent of instructor.

IE 512 DESIGN AND ANALYSIS OF EXPERIMENTS
3 hrs.
Design and analysis of experiments in research, development, and production activities. Experimental designs for evaluating significance of main effects and interactions of several variables. Treatment of problems of measurement, planning, and evaluating programs. Prerequisite: two semesters of statistics or consent of instructor.

IE 514 INTRODUCTION TO OPERATIONS RESEARCH
3 hrs.
Mathematical model building and use of deterministic and non-deterministic tools in problem solving. Problem solving structure, linear programming, transportation and assignment algorithms, game theory, networks, branch and bound algorithms, dynamic programming, deterministic and stochastic inventory models, markov chains, queueing theory and simulation. Prerequisite: IE 503 or consent of instructor.

IE 515 LINEAR PROGRAMMING
3 hrs.
Theoretical and computational aspects of linear programming; application to practical problems. Prerequisite: MTH 202 or IME 117; consent of instructor.

IE 516 SIMULATION OF MAN/MACHINE SYSTEMS
3 hrs.
Procedures and rationale for planning, designing, and implementing computer simulation experiments used to analyze human-machine systems in engineering, business, and social sciences. Prerequisite: MTH 202, IME 117, IME 311 or equivalent.

IE 522 MANUFACTURING QUALITY CONTROL
3 hrs.
Analysis of factors affecting product quality during manufacturing; process control charts; process capability studies; error of measurement; sampling plans; motivation programs; quality audit; organization. Prerequisite: one semester of statistics or consent of instructor.

IE 528 HUMAN FACTORS ENGINEERING
3 hrs.
Functional anatomy and physiology of muscle and skeletal systems and their relationship to work design. Work physiology, kinesiology, and anthropometry in relation to their application in work-place design and hand tool design. Utilization of physical work capacity and job demands for job design, personnel assignment, and assessment of work-rest scheduling. Prerequisites: IME 386, IME 312, CE 150; or consent of instructor.

IE 530 RELIABILITY ENGINEERING
3 hrs.
Specification, prediction, and evaluation of product reliability and maintainability. Use of models for failure distribution–exponential, Weibull, lognormal–and analytical and graphical methods for failure data analysis. Test plans and accelerated testing models. Design methods for increasing reliability and maintainability. Prerequisite: IE 511 or consent of instructor.

IE 564 PRODUCTION PLANNING AND CONTROL
3 hrs.
Analysis of production-inventory systems using common planning and scheduling techniques. Mathematical models for project planning, aggregate planning, master scheduling, and inventory analysis. Interface with quality control and computer systems. Prerequisites: IME 386; minimum grade of C in IME 312 and IME 314.

IE 582 ADVANCED QUALITY CONTROL
3 hrs.
Comparative study of philosophies of using quality as a business management tool, with special reference to Deming’s Theory of control charts and a study of their strengths and weaknesses. Special control charts such as CUSUM chart, median chart, moving average chart, and their application. The latest published articles used to keep up-to-date in quality technology. Prerequisite: IE 522 or consent of instructor.

IE 584 ADVANCED PRODUCTION PLANNING
3 hrs.
Planning methods for converting to or creating just-in-Time and/or group technology systems. Analytical and behavioral aspects. Prerequisite: IE 564 or consent of instructor.

IE 588 INTRODUCTION TO EXPERT SYSTEMS
3 hrs.
Knowledge-based systems design and implementation; expert system shells and programming environments; validation and implementation of expert systems; case studies/laboratories. Cross-listed as CIS 588. Prerequisites: two semesters of computer programming and one semester of statistics, or consent of instructor.

IE 590 TOPICS IN INDUSTRIAL ENGINEERING
1-3 hrs.
Topics of special interest which may vary each time course is offered. Topic stated in current Academic Handbook. May be repeated up to a maximum of 6 hrs. Prerequisite: consent of instructor.
IE 605 Advanced Industrial Engineering Problems
3 hrs.
Critical investigation and analysis in management systems design, facilities design, or industrial economics. Prerequisites: previous courses in the area of concentration; consent of instructor.

IE 681 Research
0-6 hrs.
Research on a project selected by student and advisor; to maintain progress, student must register for zero hours. Prerequisite: unconditional graduate status.

IE 699 Thesis
0-6 hrs.
Required of students choosing thesis option. Total of six hours to be taken; any semester after six hours requires student to register for zero hours to maintain progress. Prerequisites: unconditional status, consent of graduate advisor.

Manufacturing Engineering
Saeed Saboury,
Graduate Advisor

The Department of Industrial and Manufacturing Engineering and Technology offers a graduate program leading to the Master of Science in Manufacturing Engineering. The objective of the program is to educate professionals who will design, build, operate, and control world-class manufacturing systems with enhanced productivity and competitiveness.

The program is structured with five interrelated areas: design, materials, processes, systems, and automation and integration.

Students applying for admission to the program must have a baccalaureate degree in engineering or science and must meet the grade point requirements of the Graduate School. Transcripts of all prior work at the college level and two letters of recommendation must accompany the application. All applicants will be considered on an individual basis. Successful applicants will have a background in the areas of processes, materials, mathematics, mechanics, computer science, and manufacturing systems. If a candidate does not have the required level or breadth of preparation in the areas specified above, the candidate may be admitted conditionally and will be advised of appropriate preparatory courses or conditions for full unconditional entrance to the program.

A total of 33 graduate credit hours is required to complete the program. Of the total credit hours:

A. A minimum of 15 semester hours must be taken from the list entitled Manufacturing Engineering Areas. At least one course must be taken from each of the five manufacturing engineering areas. Selected topic courses and professional projects do not fulfill this requirement.

B. Six semester hours should be devoted to thesis work. If a student elects not to undertake a thesis, a minimum of 3 semester hours must be devoted to project work.

C. A minimum of 3 semester hours will be taken in advanced mathematics.

D. A minimum of 6 semester hours must be taken outside of the program. A list of suggested courses is available from the graduate advisor.

E. All students must enroll in MFE 690 Manufacturing Seminar course (for zero credit) each fall and spring term they are enrolled at the University. A student must receive at least two satisfactory grades in MFE 690.

The student must file and secure approval for a plan of study with the manufacturing graduate advisory committee prior to completing 9 semester hours. Such a plan will specify the courses to be taken and the proposed thesis or project topic. In the event that a change in the plan is necessary, such a change can be accomplished by filing a request for amendment with the advisory committee. This amendment must be approved prior to taking the alternative course. Candidates will be expected to demonstrate their
capacity to draw upon and integrate their knowledge from all courses presented for their degree in a written comprehensive examination. Scheduling, grade reporting, and retakes will conform to the rules of the Graduate School.

Manufacturing Engineering Areas

Design
MFE 520 Geometric Modeling
MFE 525 Design for Manufacturability

Materials
MFE 531 Nonmetallic Materials
MFE 533 Composite Materials

Processes
MFE 541 Forming Processes
MFE 543 Materials Removal Processes
MFE 545 Joining and Fabrication

Systems
MFE 550 Just-in-Time Manufacturing
MFE 551 Process Engineering
MFE 555 Artificial Intelligence in Manufacturing

Automation and Integration
MFE 563 Advanced Computer Aided Manufacturing
MFE 565 Computer Integrated Manufacturing

Course Descriptions

MFE 520 Geometric Modeling
3 hrs.
Computer-based representations of the shape and spatially dependent attributes of real or conceived physical objects. Techniques and concepts needed to couple the digital computer with the techniques of geometric modeling and graphics display for analysis and viewing. Prerequisite: IME 395; MTH 223.

MFE 525 Design for Manufacturability
3 hrs.
The design process; interaction of materials, processes, and design; economic considerations; design considerations for machining, casting, forging, extrusion, forming, powder metallurgy; designing with plastics; design for assembly; projects and case studies. Prerequisites: IME 395; IME 341.

MFE 531 Nonmetallic Materials
3 hrs.
Recent developments and applications of polymeric and ceramic materials. Selection and design criteria, material properties, process engineering, quality considerations, and failure prevention. Prerequisite: IME 331.

MFE 533 Composite Materials
3 hrs.
Science and technology of modern composite materials: properties, design, toughening mechanisms, fabrication methods, evaluation, mechanisms of failure and quality assurance. Prerequisite: IME 331.

MFE 541 Forming Processes
3 hrs.
Analytical methods in metal forming processes including slab approach, upper bound techniques, slip-line field and visio-plasticity methods. Forging, rolling, extrusion, drawing, sheet forming, near net-shape processes, and CAD/CAM. Prerequisite: IME 441.

MFE 543 Material Removal Processes
3 hrs.
Current and future trends in; mechanics of chip generation; forces and energies in cutting and dynamometry; thermal aspects of machining; cutting tool materials; friction, wear, vibrations and tool life; applications of engineering fundamentals to design and analysis of machining operations with emphasis on computer control. Prerequisites: IME 441; IME 341.

MFE 545 Joining and Fabrication
3 hrs.
Principles of advances in joining and fabrication of engineering materials including metallic, nonmetallic, and electronic materials. Process science and technology with emphasis on casting, welding, and microjoining of electronic components. Physical and mathematical modeling of various processes. Prerequisite: IME 331.

MFE 550 Just-In-Time Manufacturing
3 hrs.
Just-in-Time production (stockless production, zero inventories) for improving manufacturing productivity. Implementation techniques and results in Western and Japanese manufacturing environments; an integrated implementation plan. Prerequisite: IME 386.

MFE 551 Process Engineering
3 hrs.
The process design function interaction with product design, and the responsibilities within a manufacturing organization. Selection and design of machinery, tools, and methods. Computer aided process design and interactive accessing of machining data and tooling element of group technology and expert systems. Prerequisites: IME 395; IME 443.

MFE 555 Artificial Intelligence in Manufacturing
3 hrs.

MFE 563 Advanced Computer Aided Manufacturing
3 hrs.

MFE 565 Computer Integrated Manufacturing
3 hrs.
Computer Integrated Manufacturing (CIM); elements of hardware and software within the manufacturing automation environment. Islands of factory automation
and their interactions, information flow and Local Area Networks within the CIM architecture, standardization of electronic data and interfaces. Prerequisite: IME 386.

MFE 581 Selected Topics in Manufacturing Engineering
1-3 hrs.
Topics of special interest which may vary each time course is offered. Topic stated in current Academic Handbook: advances in manufacturing processes, materials, design, computer applications, manufacturing productivity, etc. Course may be repeated to a maximum of 6 hours credit. Prerequisite: senior or graduate standing.

MFE 681, 682 Professional Projects
1-3 (each)
Research project or professional problem to be selected by student and advisor. May be repeated to a maximum of 3 hours credit each. Prerequisite: consent of instructor.

MFE 690 Manufacturing Seminar
0 hrs.
Reports on current research by visiting scholars and departmental faculty and students. All graduate students are required to register and attend each semester. Prerequisite: consent of graduate advisor.

MFE 699 Thesis
3-6 hrs.
A maximum of 6 hours may be applied toward the master's degree. Prerequisite: consent of Dept. Chair.

MFG 601 Advanced Industrial Safety
3 hrs.

MFG 603 Supervision of Industrial Operations II
3 hrs.
The interfaces between manufacturing operations and their supporting functions: techniques for formulating, installing, and maintaining company operations plans.

MFG 615 Plant Design
3 hrs.
Design factors in facility layout: processing and materials handling equipment; offices and other service facilities. Prerequisite: MFG 413.

MFG 672 Organization and Supervision of Industrial Training
3 hrs.
Philosophy and responsibilities of the training department. Methods of organizing, operating, and evaluating training programs for manufacturing distribution, field services, and related functions.
Mechanical Engineering

D. Paul Mehta, Graduate Program Director

The Department of Mechanical Engineering offers opportunities for graduate study providing for advanced professional competency and leading to the degree of Master of Science in Mechanical Engineering. The main goal of the graduate program in mechanical engineering is to strengthen the ability of the student to solve complex technological problems in a creative way. To achieve this, the program of study is designed to broaden the student’s knowledge, to provide for in-depth study in an area of concentration, and to complement theoretical study with relevant and significant research and/or design. The student will ordinarily concentrate in either the mechanical systems design area or in the area of energy systems/thermosciences.

To qualify for unconditional admission, applicants should have the equivalent of an undergraduate degree in mechanical engineering with an overall grade point average of 3.0/4.0. Transcripts of all prior work at the college level and two letters of recommendation should accompany the application. Students with undergraduate degrees in related fields of science and engineering or those who do not meet the minimum grade point requirement can be admitted conditionally at the discretion of the department. Requirements for removal of conditional status will be specified in the letter of admission. For students whose primary language is not English, a TOEFL score of at least 525 is required for unconditional admission. All applicants must submit GRE general test scores by the end of their first regular semester in attendance.

Students with undergraduate degrees in mechanical engineering from institutions other than Bradley University may be required to take undergraduate coursework if their transcripts do not show a satisfactory level of preparation in certain areas.

New students who are planning to take their coursework at an off-campus site must submit copies of their transcripts for evaluation purposes with their first application for off-campus registration. To ensure that appropriate academic advising takes place, all continuing students, including those off-campus, will have their registration capability encumbered each semester until they have met with their advisor or appropriate faculty representative from the Department of Mechanical Engineering.

The student must file an approved plan of study with the graduate program director that describes the courses to be taken and any proposed research. It must be filed prior to registering for more than nine semester hours that will be applied toward satisfying degree requirements. The plan of study must be approved by the graduate program director and by the student’s advisor.

Of the minimum requirement of 30 semester hours, three semester hours must be taken in advanced mathematics topics as appropriate to the student’s program (plan of study). Courses in statistics, numerical methods, and engineering analysis are applicable to this requirement.

To achieve breadth, students concentrating in the area of mechanical systems will be required to take at least one of the following courses: ME 501, ME 515, ME 521. Similarly, students concentrating in energy systems/thermosciences will be required to take at least one course from the following: ME 502, ME 540, ME 544, CE 511. Other courses not in the area of concentration may be substituted with approval of the graduate program director.

Students opting not to do a thesis will be required to register for three to nine semester hours of research (ME 681, 682) unless waived because of demonstrated experience. All students are required to pass a comprehensive examination in their respective area of concentration during the last semester.

Course Descriptions

ME 501 Advanced Thermodynamics
3 hrs.
Laws and concepts of classical thermodynamics; real gases and equations of state; availability; irreversibility; property relations; potential functions; equilibrium; multicomponent systems. Prerequisite: ME 302.

ME 502 Problems in Advanced Dynamics
3 hrs.
Application of analytical and graphical methods to problems involving velocities, accelerations, working and inertia forces. Prerequisite: ME 341.

ME 503 Internal Combustion Engines
3 hrs.
Thermodynamic analysis, thermo-chemistry, and performance characteristics of spark ignition and compression ignition engines. Prerequisites: ME 301; ME 302 or consent of instructor.

ME 509 Solar Engineering
3 hrs.
Nature and characteristics of solar energy as a renewable energy source. Solar geometry and radiation. Thermodynamics of solar systems; emphasis on 2nd Law considerations. Performance characteristics of collectors, storage systems, house heating systems, cooling and refrigeration, and photovoltaics. Comprehensive design project. Theory and performance characteristics of solar devices and application to design of a comprehensive solar energy system. Prerequisite: ME 415 or consent of instructor.

ME 511 Heat Transfer - Conduction
3 hrs.
General conduction equation in Cartesian, cylindrical, spherical, parabolic, and paraboloidal coordinate systems solved for various boundary conditions. Inversion theorem and residue theorem used to solve Laplace transform equation. Prerequisite: ME 415.

ME 512 Heat Transfer - Convection
3 hrs.
Non-isothermal flow of fluids in Cartesian, cylindrical, spherical, and other coordinate systems: slug flow, laminar flow, flow entrance effects, property variation effects, and turbulent flow. Prerequisite: ME 415.
ME 515 Intermediate Heat Transfer
3 hrs.
In-depth treatment of the three modes of heat transfer; design applications. Development of analytical and specific numerical skills needed for solving design problems involving heat transfer. Prerequisite: ME 415.

ME 520 Gas Dynamics
3 hrs.
One dimensional flow; wave and shock motion in subsonic and supersonic flow; flow with heat transfer and friction; viscosity effects; similarity. Introduction to multidimensional flow. Prerequisite: ME 308.

ME 521 Intermediate Fluid Mechanics
3 hrs.
Analysis of statics and dynamics of non-viscous and viscous fluids. Derivation of differential equations of motion. Potential flow; vortex motion; creeping motion; introduction to boundary layer theory; turbulence. Prerequisites: MTH 224; CE 304.

ME 533 Propulsion Systems
3 hrs.
Gas turbine analysis; stationary power plants; turboprop, turbojet, and ramjet engines; rocket propulsion; applications of thermodynamics. Prerequisite: ME 308.

ME 534 Environmental Engineering - Air Conditioning
3 hrs.
Heating and cooling of moist air; solar radiation; computation of heating and cooling loads; study of heating, ventilating, and cooling systems and equipment; design project. Prerequisite: ME 301.

ME 535 Environmental Engineering - Refrigeration
3 hrs.
Mechanical vapor compression refrigeration cycles; refrigerants; absorption refrigeration; miscellaneous refrigeration processes; cryogenics; semester design project. Prerequisite: ME 301.

ME 537 Building Energy Management
3 hrs.
The energy problem. Energy consumption patterns in existing and new buildings. Analysis of energy saving strategies for existing buildings; developing designs for new, energy efficient buildings, including reliability, comfort, and economic considerations. Formal oral presentations.

ME 540 Advanced Mechanical Vibrations
3 hrs.
Principles of vibration in one or more degrees of freedom; application to machine members. Prerequisite: ME 341; MTH 224.

ME 541 Advanced Design
3 hrs.
Practical design of complete project, requiring comprehensive engineering knowledge and resourcefulness. Prerequisite: ME 342.

ME 542 Kinematic Synthesis of Linkages
3 hrs.
Design of planar and spatial linkage mechanisms to satisfy input-output motion requirements: rigid-body motion of the coupler for finitely-separated positions; coordination of shaft rotations; coupler-point path problems. Prerequisite: ME 344; MTH 202, 224.

ME 544 Mechanical Systems Analysis
3 hrs.
Mathematical modeling of mechanical, electrical, pneumatic, hydraulic, and hybrid physical systems emphasizing a unified approach such as the Bond graph technique. LaPlace, state-variable, and matrix formulation of models. Systems response characteristics, prediction, and analysis. Prerequisite: ME 341.

ME 547 Fluid Power Control Systems
3 hrs.
Definition and scope of fluid power control systems. Fluid properties. Continuity and power balance equations. Components function, operation, and dynamic performance. Use of perturbation theory for developing linearized transfer functions. Application of conventional control theory. Prerequisites: ME 301; CE 304.

ME 548 Optimization of Mechanical Systems
3 hrs.
Development and application of optimization techniques in design of engineering systems and elements; mathematical modeling and formulation of design problems for optimization; different optimization methods including linear, non-linear, geometric and dynamic programming; shape optimization. Emphasis on development and choice of appropriate search methods, sensitivity analysis, and programming. Prerequisite: senior standing in engineering or consent of department.

ME 549 Microprocessor Interfacing in Mechanical Systems
3 hrs.
Principles of microprocessor hardware and software; integration of microprocessor hardware and software in mechanical systems for data acquisition and control purposes (e.g., robotics, internal combustion engine monitoring systems, and pneumatic controls). Intensive hands-on laboratory exercises and practical problem solving. Introduction of "mechatronics." Prerequisites: ME 303; EE 328; proficiency in at least one computer language; or consent of instructor.

ME 554 Fracture of Solids
3 hrs.
Mechanical failure caused by the stresses, strains, and energy transfers in mechanical parts: conventional design concepts relationship to occurrence of fracture; mechanics of fracture; fracture toughness; macroscopic and microscopic aspects of fracture; high and low cycle fatigue failures; creep; stress rupture; brittle fracture; wear; case studies of failure analysis. Emphasis on time-dependent failures. Prerequisites: ME 354 and CE 301.

ME 556 Mechanics of Composite Materials
3 hrs.
Mechanical behavior, analysis, and design of various advanced composite materials: introduction to composite materials and their applications; elasticity of anisotropic solids; micromechanics of fiber reinforced composites and particulate composites; short fiber composites; macromechanics of laminated composites; thermal stresses; failure criteria; fracture and fatigue, reliability, testing, and design of composite materials. Emphasis on developing simple microcomputer programs for analysis. Projects involve curing and testing composites. Prerequisite: CE 301.
ME 560 Principles of Robotic Programming
3 hrs.
Programming of industrial robotic manipulators with external inputs, tactile sensing and vision sensing. A design project is required. Cross-listed as IME 560. Prerequisites: graduate or senior standing in engineering or computer science.

ME 562 Analysis and Design of Robotic Systems
3 hrs.
Underlying theories of robotic systems; implications for engineering design. Kinematic, dynamic, and control analysis of robotic arms; robotic systems design. Plant visits to observe robots in action; hands-on experience using open-loop and closed-loop robots. Prerequisites: ME 344, 304, 441; EE 328; or consent of department.

ME 573 Methods of Engineering Analysis
3 hrs.
Application of principles of analog and digital computers and numerical methods to solve mechanical engineering problems. Prerequisites: ME 341; MTH 202, 224.

ME 577 Finite Element Methods in Engineering
3 hrs.
Theory of finite element methods and applications in mechanical engineering; review of matrix algebra and basic theorem of elasticity. Direct formulation of plane truss element and variational formulations of plane stress/strain, axisymmetric solids, flexural beam, and flat plate elements. Element analysis and isoparametric formulation. Applications to problems of stability, vibrations, thermal stress analysis, and fluid mechanics. Computer programming techniques. Prerequisite: senior standing in ME or consent of instructor.

ME 591 Topics in Mechanical Engineering
1-3 hrs. each
Topics of special interest which may vary each time course is offered. Topic stated in current Academic Handbook. Graduate students may repeat the course up to a maximum of 9 credits. Prerequisite: consent of instructor.

ME 604 Design of Internal Combustion Engines
3 hrs.
Detailed study of design of internal combustion engines. Gas-pressure and inertia-force diagrams; determination of bearing loads; torsional vibration analysis; stress analysis and design of components, including piston, connecting rod, crankshaft, flywheel, valve mechanism, and cam layout. Prerequisites: undergraduate courses in dynamics of machines, internal combustion engines, and machine design, or consent of instructor.

ME 621 Boundary Layer Theory
3 hrs.
Fundamentals of vector and tensor notation; derivation of Navier-Stokes equations; exact solutions; laminar boundary layer flow; similarity solutions; numerical solutions; integral solutions; fundamental transformations; thermal boundary layers; introduction to turbulent boundary layers. Prerequisite: ME 521.

ME 631 Air Pollution and Engine Emissions
3 hrs.
Internal combustion engine as related to air pollution and smog formation; emission monitoring methods; formation, release, and atmospheric reaction of spark and compression ignition engine pollutants; effect of engine parameters on emission control methods; effect of emission control strategies on performance and economy. Prerequisites: ME 501, 503; or consent of instructor.

ME 648 Advanced Computer Aided Design
3 hrs.
Augmentation of mechanical design through application of computer graphics. Hardware/software characteristics; elements of geometric/solid modeling. Emphasis on integration in the application of the design process through packages for geometric/solid modeling, finite element analysis, and mechanisms and system simulation. Prerequisites: BSME; or background in mechanical and thermal systems and consent of Department Chair. Students without a BSME degree may take ME 342, ME 344, ME 415, and ME 411 to help develop an appropriate background for the course.

ME 681, 682 Research
1-6 hrs. each
Research on a project selected by student and advisor.

ME 691 Topics in Mechanical Engineering
3 hrs.
Topics of special interest which may vary each time course is offered. Topic stated in current Academic Handbook. Prerequisite: consent of instructor.

ME 699 Thesis
3-6 hrs.
Maximum of 6 semester hours total of research and/or thesis may be applied toward the master’s degree. Prerequisite: consent of department.