Civil Engineering

Souhail Elhouar,
Graduate Program Coordinator

The Department of Civil Engineering and Construction offers an MSCE degree program that prepares graduates for thriving engineering careers characterized by continued professional growth. Our graduates are given unique opportunities to acquire the talents and skills needed in a highly technical society facing serious uncertainties and challenges in the environment and infrastructure. Our program provides you with the broad scope necessary for a fruitful and successful career in the practice of civil engineering and construction management.

To meet the needs of industry and students, the department recently acquired a multimedia laboratory and equipped it with the most sophisticated software and hardware available anywhere in the country. This recent acquisition provides a vivid example of the commitment to excellence and persistent drive that has become the hallmark of our department. The departmental goal is to provide an educational experience that is nationally and internationally recognized. Our students and faculty aspire to be leaders in their respective fields on and off campus.

Financial Support Research and teaching assistantships are available for qualified graduate students through the department and ongoing funded research projects. Currently more than 60% of all graduate students are being supported. The department has numerous endowed scholarships, and some of these funds provide fellowships to selected graduate students. Qualified students may also receive up to 100% tuition waiver from the University. Additionally, faculty and graduate students have received research grants from major companies, state agencies, the National Science Foundation, and other private and government sources.

Students have abundant opportunities to gain practical experience off campus either part time or full time during semester breaks and summers. For example, the Illinois Department of Transportation has hired many graduate students. Various industries have employed our graduates under a pollution prevention program sponsored by the Illinois EPA.

Internationalization and Our Global Explorer Program The Global Explorer program is designed to expand the professional capabilities, stimulate intellectual growth, and broaden the personal perspectives of all participants. Arrangements have been made with universities around the world to send our students either for short courses or for the entire academic year. Students with financial need have received financial support that enables them to study abroad for equal or less than what it would cost them to study at Bradley University. This program enables students to meet...
the challenges of tomorrow and equips them with the needed skills to compete in an international marketplace.

Programs of Study The graduate program can be characterized by areas of concentration: construction management, structures, and geo-environmental/water resources. New course offerings have been introduced in multimedia, pavement and superpave, GIS/GPS, and transportation systems. Selected courses in other engineering departments, the college of business, and computer science are permissible. The program's flexibility provides graduate students with a wide variety of means to prepare for their future careers.

Construction Management The construction industry is the largest industry in the United States. Its impact is felt in every area of civil engineering, both nationally and internationally. This fast-growing area provides courses that enhance the education of students by examining the most recent trends and methods in the management of the construction process. Opportunities are provided through coursework dealing with advanced cost estimating, contract administration, productivity analysis, total quality management (TQM), cutting-edge software dealing with design/build processes and multimedia presentations, and many other areas that affect the profession.

Structural Engineering The graduate courses in the structural program offer a wide variety of courses that provide a strong theoretical and applied background suitable for both practice and research. The structural engineering group has five faculty members with a diverse academic background. The group employs experimental, numerical, and analytical techniques in their research activities. The research interests within the group include: behavior and design of reinforced concrete, structural durability, analysis and design of bridges, finite element analysis, computational mechanics, structural stability, and seismic analysis and design of structures.

Students are given the opportunity to utilize a spectrum of computer facilities, including a networked personal computer and workstations. These computers are equipped with the state-of-the-art structural engineering and finite elements software packages. The well-equipped structures laboratory provides state-of-the-art research tools. Among them are an MTS 80 kips Cyclic Testing System, NI data acquisition system, a large number of transducers and LVDT's, Universal Testing Machine, and an ELE compression testing machine.

Geo-Environmental Engineering This program option meets the growing need for professionals who are well educated in the science and engineering of treatment processes and pollutant transport and impact on the environment. The program also addresses the need for more informed decision-making with respect to environmental risks and impacts. Graduates from this program are employed by governmental agencies, by consulting companies that specialize in environmental engineering and environmental planning, and by industrial manufacturing companies in pollution prevention or environmental control rules. Funded research from Caterpillar Inc. and from regional and national environmental agencies provides an opportunity for graduate students to participate in the research of hazardous waste treatment, biological wastewater treatment, physico-chemical treatment, and management models of environmental policies and systems.

Facilities The Department has major laboratories with state-of-the-art equipment in multimedia, Archicad, geo-technical, concrete, asphalt, environmental, surveying, structural, microcomputers, construction, design, projects, research, and fluids. Our students have 24-hour access to a spectrum of computer facilities, including networked personal computers and workstations. These computers are equipped with cutting edge software packages in structural, geotechnical, environmental, and construction management. The CEC laboratories include needed instrumentation for education and research. For example, the structural laboratory includes an MTS 80 kips Cyclic Testing System, NI data acquisition, a universal testing machine, and an ELE compression testing machine. The environmental laboratory includes a gas chromatograph with purge trap, atomic absorption spectrophotometers, and FTIR. The asphalt laboratory is being updated to include Superpave testing equipment. These laboratories are well equipped to meet the educational needs of students and research objectives of graduate students and faculty.

Career Services Graduate students have numerous opportunities to develop through professional activities such as the student chapters of ASCE and AGC. These organizations sponsor noted speakers on a variety of topics and provide a forum for interaction between students and industry. In addition, graduate students may become involved with community projects such as the Bridge Pal program that fosters engineering interest in high school seniors.

The departmental advisory board is composed of successful civil engineers and construction leaders. Advisory board members are very active as speakers and outside professional contacts for our students. The departmental director for job placement also helps our students with their search for employment.

Faculty Qualifications The faculty are renowned worldwide and have published more textbooks (25) than any other civil engineering or construction department of similar size in the United States. These textbooks are used at a large number of highly regarded institutions. CEC faculty members have received numerous awards for teaching excellence and scholarship. Faculty have also conducted research for national, state, and local sponsors that have benefited our students.
MSCE Degree Requirements: After selecting core courses, the student may study in any one of three areas of concentration: construction management, structural, or geo-environmental/water resources. The student has the opportunity of selecting a thesis or a non-thesis option. The thesis option requires 6 semester hours of CE 699 (Thesis). The non-thesis option requires a minimum of 6 semester hours in an area of concentration.

In addition to the requirements of the Graduate School, the Department of Civil Engineering and Construction has the following requirements:

1. The MSCE program requires a minimum of 30 semester hours beyond the bachelor’s degree.
2. All MSCE students are required to take CE 510 to meet the mathematics requirement and a minimum of 18 semester hours from the department.
3. A plan of study is required by the end of the first semester. The plan may be changed by filing a request for amendment. This request must be filed with and approved by the graduate coordinator prior to registering for courses. Courses not on the approved study plan may not be counted towards the MSCE degree.
4. Admission of undergraduate students into 500-level courses requires that the student have the necessary prerequisites and a minimum average of 2.50/4.0 in the major field.
5. Admission into the MSCE program requires a bachelor’s degree in civil engineering or construction. Qualified graduates from other engineering or related fields may be admitted conditionally. The conditional status may be changed to unconditional only after all deficiencies are removed.
6. Each student is required to pass a comprehensive examination during the last semester of his/her study. Students seeking the thesis option are required to make oral defense of their thesis instead.

Exceptions to the departmental requirements listed above may be made with the approval of the department chair. Such exceptions are rare and will only be granted in cases where clear justification can be demonstrated.

Course Descriptions

CE 508 Advanced Soil Mechanics 3 hrs.
Consolidation theory and settlements, stress-path method, strength and deformation behavior of soils, failure theories, confined flow, flow nets, numerical analysis of flow, unconfined flow, seepage through earth dams. Laboratory experiments on consolidation and shear strength. Prerequisites: CE 308.

CE 510 Advanced Numerical Methods with Engineering Applications 3 hrs.
Selected numerical methods and applications chosen to meet current needs for solving problems in civil engineering. Prerequisite: CE 202 or equivalent.

CE 515 Advanced Foundation Engineering 3 hrs.

CE 522 Advanced CADD 3 hrs.
Applications of CAD systems. Visualization and optimization of the processes used in construction through three-dimensional modeling and utilization in various civil engineering and construction applications. Prerequisite: CE 244 or CON 224 or consent of department chair.

CE 524 Multimedia Applications in Civil Engineering and Construction 3 hrs.
Application of state-of-the-art technology in projects during various phases from inception to completion including planning, design, procurement, construction, handing over, and operation and maintenance. Investigation of different available tools and technologies in recording, storing, and sharing project information. Prerequisite: senior or graduate standing in the College of Engineering and Technology.

Advanced techniques in taking-off quantities, pricing techniques, computer estimating, and bidding strategy models. Prerequisite: CON 396.

CE 528 Advanced Scheduling 3 hrs.
Project scheduling methods with emphasis on network scheduling techniques, work breakdown structure (WBS), resource and cost loading, scheduling under uncertainties, project time compression, resource leveling, scheduling for linear projects (LOB), time-cost trade-offs, project status, reporting and updating, schedules as tools for claims documentation. Case studies. Computer based. Prerequisite: CON 392.

CE 529 Construction Contract Administration 3 hrs.
Issues in the administration and implementation of a construction contract. Coordinating and controlling the construction project under legal and ethical considerations. Prerequisites: CON 492.

CE 536 TQM Principles in Construction 3 hrs.
Theory and analysis of the Total Quality Management system as applied within the construction industry. Case studies. Prerequisite: QM 262 or IME 311.
CE 537 Simulation in Construction 3 hrs.
Decision making using simulation and simulation languages to model construction operations. Simulation of construction process using what-if analysis. Role of simulation and decision making in the planning and scheduling phases in the construction industry. Topics include introduction to discrete event simulation, generation of random numbers, queuing, simulation languages for construction. Prerequisites: senior or graduate standing; consent of instructor.

CE 541 Transport Phenomena in Environmental Systems 3 hrs.
Phenomena that affect mass balance of contaminants in environmental systems. Advection, diffusion, dispersion, and interfacial mass transfer. Physical, chemical, and biological descriptions of these processes with mathematical models. Solutions to these models with illustrations from reactor engineering and surface water quality modeling. Application to actual process reactor. Prerequisites: senior or graduate standing; consent of instructor.

CE 542 Physiochemical Processes Design 3 hrs.
Design of physical and chemical unit processes and unit operations with an emphasis on water treatment. Design of aeration systems, coagulation and flocculation processes, sedimentation tanks, filtration systems, chemical precipitation processes, ion exchange processes, and disinfection processes. Advanced purification methods including adsorption, reverse osmosis, electro-dialysis, and membrane processes. Treatment and disposal of physiochemical process sludges. Prerequisite: CE 360.

CE 543 Biological Processes Design 3 hrs.
Application of concepts from microbiology and biology to environmental engineering systems. Detailed integrated design of wastewater treatment. Microbiology of wastewater treatment processes and soil bioremediation processes. Interaction between biogeochemical phenomena and microbial processes in an environmental engineering context. Prerequisite: CE 360.

CE 544 Advanced Hydraulics 3 hrs.
Steady state closed conduit flow; flow in pipe networks. Hydraulic transients in pipelines. Open channel flow; gradually varied, spatially varied, rapidly varied flow in open channels; open channel transients. Water and wastewater treatment plant hydraulics. Sedimentation mechanics, sediment transport, design of unlined channels, bridge scour, reservoir sedimentation. Design and computer applications. Prerequisite: CE 430.

CE 546 Groundwater Hydrology and Hydraulics 3 hrs.
Groundwater in the hydrological cycle, fundamentals of groundwater flow; flow net analysis; steady-state and transient well testing techniques for parameter estimation; multiple well systems; leaky aquifers; sea water intrusion; groundwater investigation; artificial recharge of aquifers, design of wells; subsidence and lateral movement of land surface due to groundwater pumping. Design and computer applications. Cross listed as GES 546. Prerequisites: CE 202, 304, or consent of instructor.

CE 550 Geoenvironmental Engineering 3 hrs.

CE 555 Environmental Regulations and Policy 3 hrs.
Description and analyses of environmental regulations and policies for air, water, groundwater, and solid wastes. Conventional and hazardous wastes. Toxicological, risk assessment, and regulatory aspects of solid and hazardous waste management; characterization of hazardous wastes and materials; waste reduction strategies; collection, storage, and transportation methods. Environmental impact statements. Prerequisite: CE 360.

CE 560 Advanced Structural Analysis 3 hrs.
Direct stiffness method for the analysis of two-dimensional trusses and frames, equivalent nodal forces, thermal and settlement effects, principle of virtual work, space trusses, grid structures, static condensation, Lagrange multipliers, tapered elements. Prerequisites: CE 202, CE 359.

CE 562 Advanced Steel Design 3 hrs.
Structural framing systems; rigid frame design; design of bracing; design of simple rigid and moment resisting connections; torsion of steel open sections; design of beams subjected to torsion; design of steel plate girders; design of composite beams. Prerequisite: CE 442.

CE 565 Advanced Reinforced Concrete 3 hrs.
Advanced topics in flexural design; torsion in beams; behavior and design of slender columns; biaxial bending of columns; design of two-way slabs; behavior and design of frame-wall structural systems; inelastic analysis of flexural members; use of strut and tie analysis; yield line analysis; design of mat foundations. Prerequisite: CE 403.

CE 567 Prestressed Concrete 3 hrs.
Theory and analysis of prestressed concrete members by various methods of prestressing; design of simple and continuous beams and slabs; prestress losses; composite beams. Extensive study of materials used in prestressed concrete. Precast concrete systems. Prerequisites: CE 403; senior or graduate standing.
CE 573 Advanced Mechanics of Materials 3 hrs.
Two- and three-dimensional stress and strain at a point; two-dimensional elasticity; beams on elastic foundations; torsion of noncircular sections; curved beams; unsymmetrical bending; plastic collapse and limit analysis. Prerequisites: CE 301; senior or graduate standing.

CE 575 Structural Dynamics 3 hrs.
Single degree of freedom systems; multi-degree of freedom systems; lumped mass and consistent mass—MDOF beams; free and forced vibrations; earthquake loading; impact and impulsive loads; numerical procedures.

CE 580 Highway Safety and Risk Management 3 hrs.
Safety aspects of streets and highways; planning, implementation, and evaluation of highway safety improvement projects and programs. Highway risk analysis and risk management systems. Prerequisite: senior or graduate standing.

CE 581 Traffic Signal System Optimization and Simulation 3 hrs.
Analysis and design of traffic signals for isolated intersections and coordinated systems. Hardware, communication, and detection systems associated with signal systems. Fundamental concepts of simulation of traffic operations. Application of optimization/simulation computer software programs. Prerequisites: CE 310; senior or graduate standing.

CE 582 Economic Analysis for Highways & Transportation Systems 3 hrs.
Application of engineering economy for transportation systems; analysis of congestion costs, highway transportation costs, and road user consequences; identification and measurement of highway benefits, concepts of value of time, and willingness to pay; discount rates and vest charge; concepts of depreciation and service life; life cycle cost analysis; evaluation of transportation alternatives and evaluation of completed projects and programs. Prerequisite: senior or graduate standing.

CE 585 Advanced Pavement Design 3 hrs.
Methods used to characterize, stabilize, and specify pavement materials. Methods for rigid and flexible highway and airport pavement design and analysis. Load equivalence factor and specific design considerations related to environment and traffic characteristics. Pavement overlay design. Software for pavement design and analysis using various models. Prerequisites: CE 356, senior or graduate standing.

CE 586 Pavement Management Systems 3 hrs.
Condition assessment of the infrastructure with emphasis given to pavement, deterioration modeling, engineering economics of payment systems, evaluation of project alternatives, optimization and ranking, sustainability, and strategic environment assessment for infrastructure decision-making. Prerequisite: CE 356.

CE 591 Special Topics I 1-3 hrs.
Topics of special interest, which may vary each time course is offered. Topic stated in current Schedule of Classes. Prerequisite: senior or graduate standing.

CE 592 Special Topics II 1-3 hrs.
Topics of special interest, which may vary each time course is offered. Topic stated in current Schedule of Classes. Prerequisite: senior or graduate standing.

CE 599 Thesis 3-6 hrs.
Research on a topic selected by the student and approved by the thesis advisor. Prerequisite: graduate standing in CE.